How does innovation take place in the mining industry? Understanding the logic behind innovation in a changing world

Beatriz Calzada, UNU-MERIT, IHS Michiko Iizuka, GRIPS

Motivations

1. Mineral resources contribute to export but limited in generating innovation that leads to development

2.Innovation contributes to development in following ways:

- 1) Productivity upgrading: getting more for the same amount of investment
 - 1) Adding value to the final product
- 2) Spillover effect: generating growth in seemingly unrelated activities to scale up its impact
 - 1) Creation of supplier network: backward linkages
 - 2) Creation of industry with which the knowledge is shared: side linkages
- 3) Meeting Social and environmental agendas (SDGs)
 - 1) Income inequality, employment, inequality to access to basic services (water, energy)
 - Environmental sustainability(E.g. Climate change), Local ecological degradation(contamination)

3. Understanding how innovation take place in mining paying attention to: current changes

Emergence of digital technology, social and environmental concern

Purpose

- Understand Innovation Pattern in mining sector
- How (Innovation take place in mining)?
 - What (kind of innovation are being introduced?),
 - Who (in the value chain innovate?)
 - Which (segment of value chain innovation are likely to be introduced?)
 - When (innovation takes place?),

From Using existing literature, model, analysis and data

What sort Policy and enabling environment is necessary?

Characteristics of innovations in mining from literature

- Restricted by the type of infrastructure installed in the mine (e.g 20-year cycle)
- Requires upfront large investment to introduce radical changes

Upgrading of productivity via scale economies

- Achieved by introducing machines (embodied technology)
- Focusing on process efficiency aiming to reduce cost
- Often involves coordination with suppliers (e.g. logistics)
- Aiming to maximize mineral extraction
- Knowledge comes from diverse sectors (characteristics of NR based activities)
- Appropriation of production knowledge is not so important for the miners
 - Locally specific, exposed sites
 - Limited applicability, limited actors, consortium
- Knowledge/information on exploration is critical for the miners

Simple production functions of mining 1

- Profit(P) is Revenue (R) minus Cost (C)
 - P=R-C
- Cost consist of Variable Cost (VC)and Fixed Cost (FC)
- Fixed cost is the cost that is required regardless of how much one produces (cost of operation, infrastructure, machineries, etc.)
- Variable cost increases according to the volume of production (additional inputs, labour, production costs)
 - C=VC+FC
- Revenue depends on Price per unit of mineral (PR)*Volume of minerals extracted(V)
 - R= PR * V

Restriction

Price is exogenous because it is Commodity.

Simple Production function of mining 2

Profit=Revenue-Cost MAX (P)=MAX(PR*V)-MIN(VC+FC)

Maximize Revenue (PR* V) or Minimize Cost (VC+FC) or do both

1. Maximize Revenue: firm can actively influence V (volume)

Improve the mineral extraction efficiency:

Explorations (better deposit) or Beneficiation (mineral extraction extractive metallurgy e.g SX-EW, bioleaching etc.)

2. Minimize Cost: important to reduce Fixed Cost

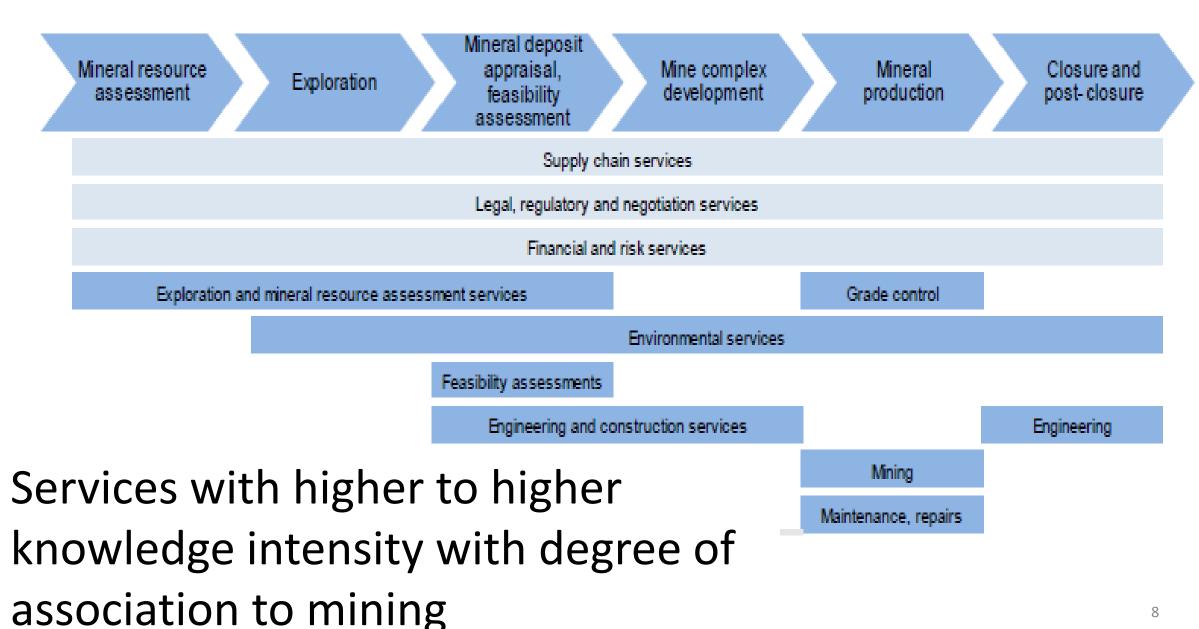

Introduction of machines to optimize process with digital technologies (e.g. autonomous logistics—from scale up in size)

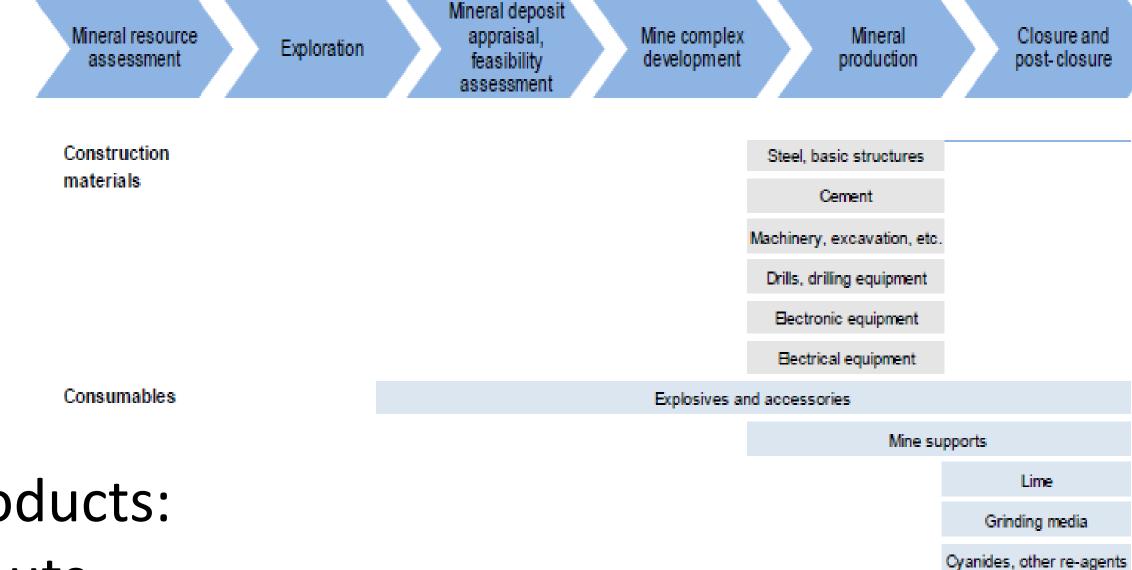
Organizational arrangement (optimal service maintenance)

Which segment of value chain in mining innovation likely to take place?

Explorations phase, beneficiation (process) and Fix cost reduction (of various kinds of activities) concerns suppliers

What are the activities in mining?

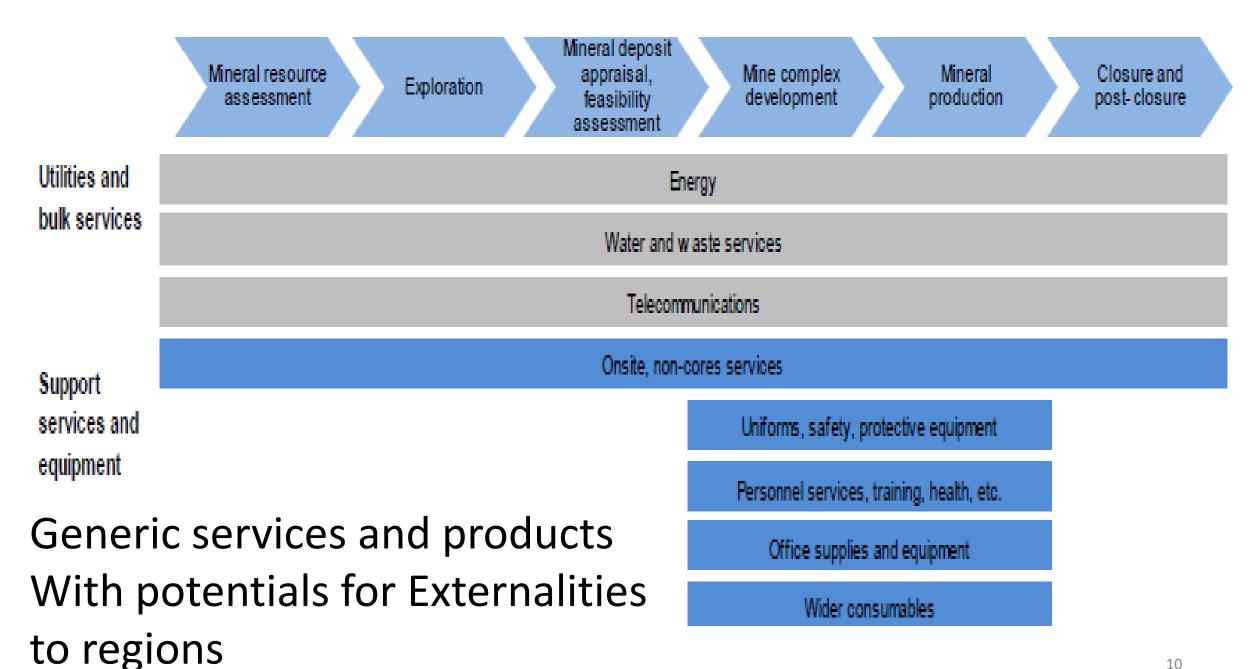



Main line of business activities: Exploration (Blasting), Mining operation (Ore processing), Metal production (Metallurgy, Refining) and Decommission Supporting services(specific to mining): Transport, Environmental and **Automation**

Generic services: finance, energy, ICT, water, education, health etc.

al, 2019

What sort of innovative activities exist in mining? Suppliers


Products: inputs

Fuel and related

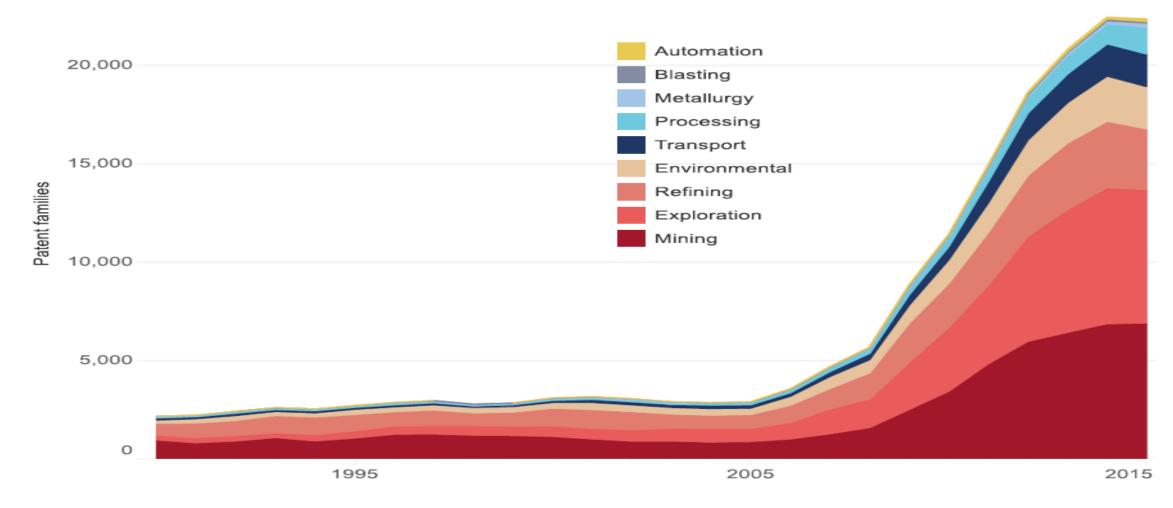
~

Replacement parts

Fuel and related

Changes that are taking place in mining sector

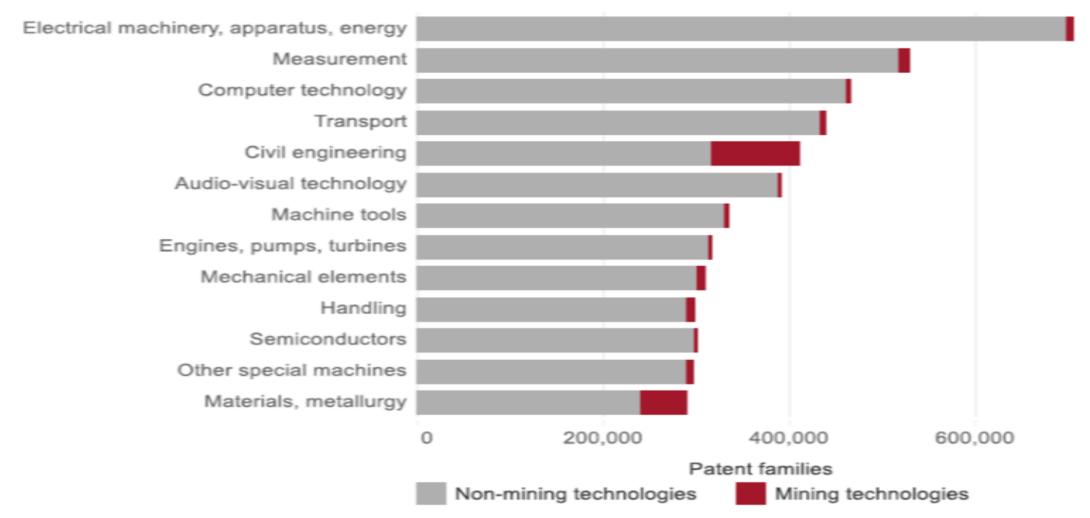
- Increasing role of suppliers, especially Mining Engineering Technology Services (METS) (local and global)
- Decentralization, longer extension of global value chains of suppliers
- Increasing use of knowledge intensive services and suppliers
- Emergence of digital technologies for optimization
- Fluctuation of prices(copper): some recovery after the decline
- Decreasing ore grades
- Increasing social conflicts (safety, rights of local community) and environmental concerns (global, i.e. CO2 emissions, and local ecology)
- Increasing resource nationalism (local contents requirement)
- Lack of human resources to deal with digitalization
- Lack of suppliers capable to respond needs of mining firms (start-ups, open innovation?)


Global Value chains

Technology & innovations

Challenges

Increase in patent applications for mining sector


Figure 19: Mining and METS firms by technology, by earliest priority year

Source: WIPO Mining Database (firm subset)

These patents are not from mining technologies

Figure 20: Patent families of mining firms by WIPO technology field

Degradation of ore quality

-Processing and refining Historical and forecast ore grades, % Cu Cu% 0.80 Operating mines history 0.76% perating mines forecast Increase in cost 0.75 既存鉱山実績 0.70 0.65 0.65% 0.60 0.55% 0.55% G 0.55 0.51% 0.50 規載以予測 0.45 0.42% 0.40 Source Kamil Jakowski, KGHM, 2015

Ore require more cost in

-Beneficiation

-Exploration in difficult places

Digital technology penetration

DIGITAL TECHNOLOGIES ALREADY EMPLOYED OR WILL BE EMPLOYED IN THE NEXT 3-5 YEARS IN MINING OPERATIONS

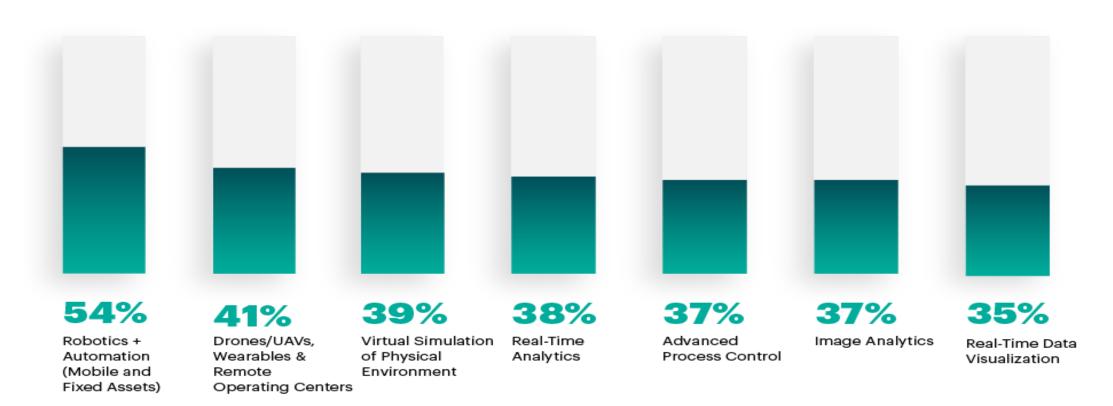
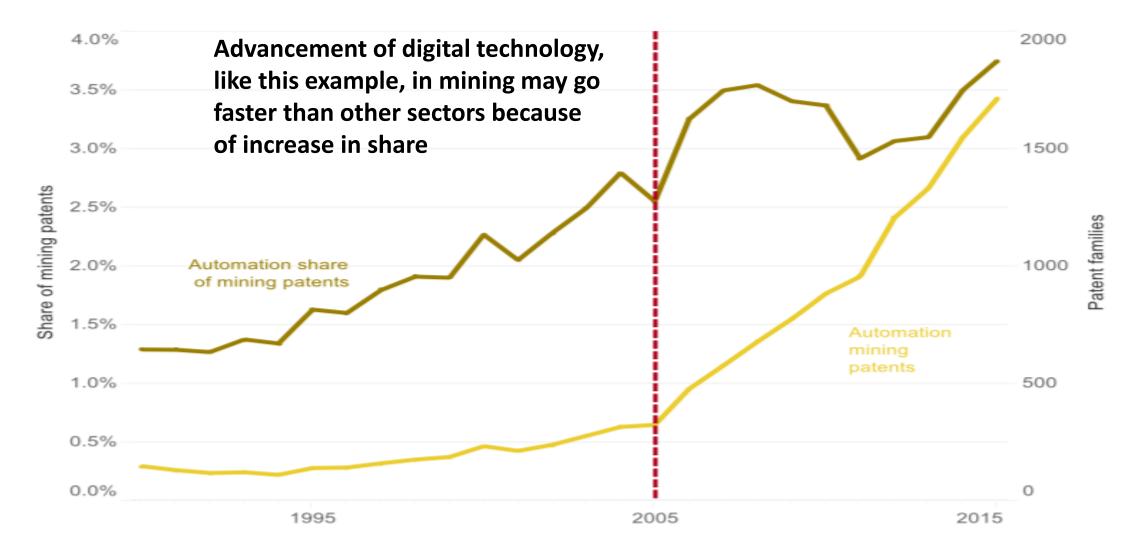
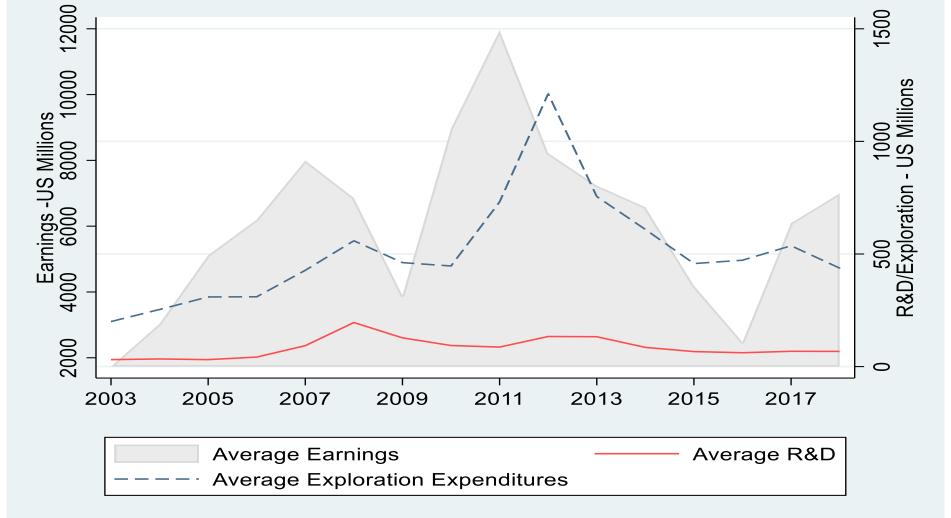



Figure 12: Patents families in automation class over time

Source: WIPO Mining Database (technology subset)

How Innovation takes place in mining?


- When (at what moment) innovations are made?
- Who innovate and what?
- Where (which segment of GVC) is innovation likely to happen?
- What sort of innovation are they?

Based on existing evidence as follows:

- R&D expenditure
- Investment in exploration (proxy to R&D in mining)
- Patent
- Input-output
- Roadmaps (annex)

When does it take place? From the investment data

Average R&D and exploration investments for the largest mining firms: BHP Billiton, Rio Tinto, Anglo American and Glencore from 2003-2018 (US millions)

Investment in **Exploration** is substantially higher than R&D. It follows average profit. The distribution is higher in Canada Australia the US, and China Investment on knowledge R&D It also follows average profit.

Where does the knowledge investment made? Proxy by patent

	Automation	Blasting	Environmer	Exploration	Metallurgy	Mining	Processing	Refining	Transport	Total
1970-1995										
Suppliers	19	55	1,966	3,406	329	6,125	433	5,803	1,526	19,662
	0.1%	0.3%	10.0%	17.3%	1.7%	31.2%	2.2%	29.5%	7.8%	100.0%
Mining	3	73	1,368	3,729	116	1,126	559	3,720	159	10,853
	0.0%	0.7%	12.6%	34.4%	1.1%	10.4%	5.2%	34.3%	1.5%	100.0%
1996-2015										
Suppliers	62	452	5,616	13,316	334	14,845	1,910	10,075	6,124	52,734
	0.1%	0.9%	10.7%	25.3%	0.6%	28.2%	3.6%	19.1%	11.6%	100.0%
Mining	17	482	3,716	28,254	70	4,174	773	4,443	467	42,396
	0.0%	1.1%	8.8%	66.6%	0.2%	9.9%	1.8%	10.5%	1.1%	19 100.0%

Who is innovating?

Mineral producers patent less in Mining sector

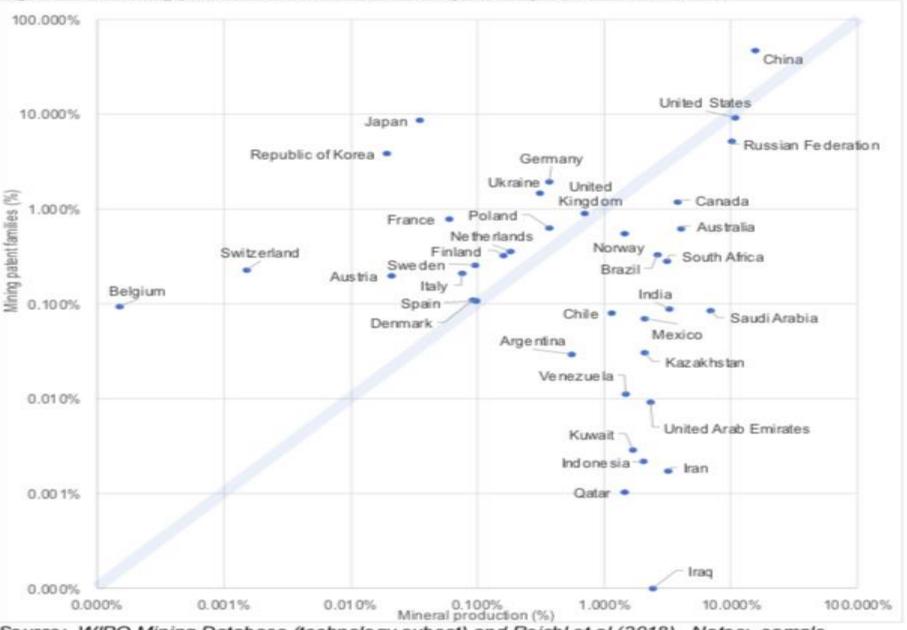
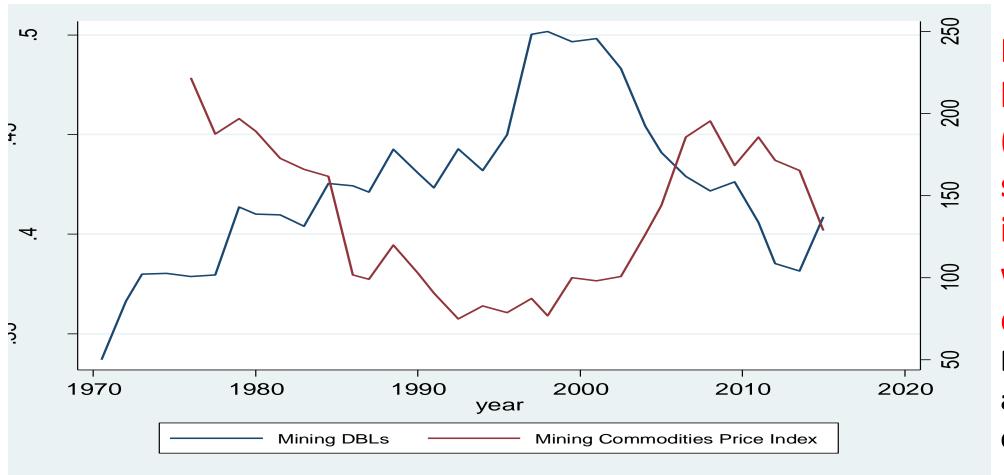


Figure 13: Mining production and innovation by country, selected countries

Source: WIPO Mining Database (technology subset) and Reichl et al (2018). Notes: sample contains only top mineral producing and top mining patenting countries.

Figure 18: Number of mining patents over the years by type of stakeholder Who is innovating?: 40,000 Universities Increasing participation Research centers by University in relative Individuals 30,000 Companies terms Patent families 20,000 10,000 0

2005


Source: WIPO Mining Database (technology subset)

1995

2015

Who is innovating and when?: suppliers' contribution to value increase when mineral price goes down

World Backward linkages and price indices in mining sector 1975-2015

Backward linkages (use of supplier) increase when price declines **Backwardlink** age=reliance on supplier

Findings

- How (Innovation take place in mining) from existing evidence?
 - When (innovation takes place?)
 - Exploration when price goes up (revenue enhancing)
 - Process innovation when price goes down (cost cutting)
 - What (kind of innovation?)
 - Improvement on finding better deposits, efficiency in extraction rate
 - Improvement in process, operation, safety, labour saving, optimization
 - Technological, Research oriented innovation, Organizational focusing on process
 - Who (innovate? And Where, which segment of value chains?)
 - Suppliers for cost reducing innovation
 - Miners for extraction improvement innovation, explorations
 - Participation of university increased, in particular with university-company collaboration
 - Different types of collaboration may emerge (with start up, research institution for innovation)

Conclusion

Innovation pattern in mining has some characteristics due to the nature of industry

- High risk and high return—making it long term investment on knowledge difficult but we observe increase in patenting activities since mid 2000s.
- Long term and costly investment with 20 year cycle of investment(if in scale efficiency)
- Exogenous price of commodity influence the type of innovation
- Innovation activities are concentrated in
 - Cost reduction focus
 - Embodied technology: introduction of machineries
 - Service suppliers, close collaboration with suppliers
 - Exploration, Extraction efficiency main concern of miners
 - Innovation pattern is very much influenced by mineral Price=Profit
- New emerging space for digital technology in process optimization
- Future potentials for social and environment related technologies
- Increasingly knowledge comes from outside of mining sector
- Collaboration with different partner may be needed

Areas of consideration for policy to stimulate innovation in mining

- Creating inducive environment for good collaboration with different stakeholders for innovation
 - Miner-supplier collaborations
 - Miner-supplier with technological start-ups
 - Miner University collaborations
 - Mining suppliers –University collaborations
 - Other sector-Mining collaborations
- Resource mobilization, ownership of IPR, mechanisms for above collaboration
- Standardization of equipments to facilitate upgrading of suppliers?
- Capacity upgrading of human resources and suppliers for the optimal uses of digital technology will be needed (Solow Paradox)
- Value addition of Ore through certification ?
- Lateral Migration of technology should be considered
 - In areas of contamination mitigation (Talling)
 - Providing energy and water

Annex:

Summary of Technological roadmap for mining sector for 2035 by Chile Alta Ley

Technological roadmap by phase: Exploration and Mining development

	Main technology	Main Companies	Main Univ.
	Prospecting, Tunnels Galleries, Systems using	mobile Upstream Resources, Foro Energy, Tech Resources,	,
	Surface mine operation	Sandvik Mining & Construction, BHP Billion Innovation, Sandvik Intellectual Property, Atlas Copco Rock Drills,	Australia
Jource, Diamber et al, 2	OIJ		<i>L1</i>

Technological roadmap by phase: Exploration and Mining development

	Main technology	Main Companies	Main Univ.
Operation	Drills, adopted to change directions with means for collecting substances; Manufacture of composite layers, parts or objects based on metallic dusts	Baker Hughes, Halliburton Energy Service, Kennametal, Longyer, Potter Drilling, Schlumberger technology, Smith International TDY IND	China
Tailing	Destruction or transformation of solid wastes, low mixers, sludge treatment, devices, water treatment	Basf, Suncor Energy, Kurita Water, Smith and Co Changchum Gold Resources, Du Pont, Fort Hills Energy, Nippon Soda, Total E&P Canada, China National Gold Group	Germany, China

Source: Bramber et al, 2019

Technological roadmap by phase: Comminution Beneficiation and Concentration

	Main technology	Main Companies	Univ. Research
Grinding	Pressing adapted to specific ends, Layout of separation in the plant, Control systems adapted to crushing and disintegration, Metal working	Smidth, Unimin, Outotec, Metso Minerals France, Tech Resources, Arter Technology, KDH Humboldt Wedag	Canada, South Africa, Chile Australia
Crushing	Preliminary treatment of scrap, Methods or ancillary devices, Accessories adapted to crushing and disintegration	Tech Resources, Takraf, Unimin, Joy MM Delaware, Thyssenkrupp, SuncorEnergy	China, USA, Australia
Flotation	Flotation agent, Materials, specific applications	Barrick Gold, Basf, BHP Billion SSM Dev, Cytech Tech, Evonik Industries, Ex Tar Technologies, Geordia Pacific	Germany
Source: Bramber	et al, 2019	Chemicals, Sumitomo Metal Mining	29

Technological roadmap by phase: Processing

	Main technology	Main Companies	Univ. Research
Smelting	Mitigation of climate change from production	Outotech, Tanaka Precious Metal, Dowa Metals&Mining, JX Nippon Mining & Metals, Precious Metals Recovery, Mitsubishi Materials, Kosaka Smelting and Refining, Nippon PgM, Outokumpu Umicore Ag	China, Japan, Brazil, USA
Leaching	Ion exchange, complex Chelate formed, substances	Freeport Mc Moran, JX Nippon Mining&Metals, Outotec, Nippon Mining, Cognis IP Man, Basf, Cytec Tech, Outotec Finland	Canada, Mexico, S.Africa, China
Solvent	Solid waste management, Rare metals ollection, Metal composites		USA, Canada, China, S. Africa, Belgium, Spain, France, Japan ce: Bramber et al, 2019

Technological roadmap by phase: Refining

	Main technology	Main Companies	Univ. Research
	Obtaining copper and other metals, Solid waste management, Electrolytic Production, Recovery and refining metals via electrolysis	JX Nippon Mining&Metals, Pan Pacific Copper, Nippon Mining, Phelps Dodge, Freeport McMoran, Outotec, Xianguang Copper, Sumitomo Metals Mining	
Electrow	NA	Alcan, Aluminum of America, Aluminum Corp of China, BHP Billiton, Elkem Green Metals, Moltech Invent, Pechiney Aluminum Source	S. Korea, USA, Canada Belgium : Bramber et al, 2019